Lecture7 - variation of parameters#

The fundamental set of solutions amd Wronskian#

Consider linear ODE:

\[\begin{eqnarray*} &\text{ }& y''+p(t)y'+q(t)y=0 \\\\ y_{1}(t) \text{ and } &y_{2}(t)& \text{ form a fudamental set of solutions (fss) if:} \\\\ &1.& y_{1}, y_{2} \text{ are solutions of the ODE.} \\\\ &2.& \text{every solution } y(t) \text{ of the ODE can be written as:}\\\\ &\text{ }& y(t) = c_{1}y_{1}(t) + c_{2}y_{2}(t) \end{eqnarray*}\]

Theorem 5

Two solutions form a fss if the determinat

\[\begin{eqnarray*} W(t) = \begin{vmatrix} y_{1}(t) & y_{2}(t) \\ y_{1}'(t) & y_{2}'(t) \end{vmatrix} \neq 0 \end{eqnarray*}\]

W(t) is called Wronskian.

Example 15

Consider the ODE:

\[\begin{eqnarray*} y''+y=0 \end{eqnarray*}\]

Show that

\[\begin{eqnarray*} y_{1}(t)=\sin{}(t), y_{2}(t)=\cos{}(t) \end{eqnarray*}\]

form a fss of this ODE.

  1. they are solutions to the ODE.

\[\begin{eqnarray*} W(t) = \begin{vmatrix} \sin{}(t) & \cos{}(t) \\ \cos{}(t) & -\sin{}(t) \end{vmatrix} = -\sin{}^{2}(t) - \cos{}^{2}(t) = -1 \neq 0 \end{eqnarray*}\]

Variation of parameters#

Consider the ODE:

\[\begin{eqnarray*} 1y''+B(t)y'+C(t)y=f(t). \end{eqnarray*}\]

Suppose we have two homogeneous solutions:

\[\begin{eqnarray*} y_{1}(t), y_{2}(t) \end{eqnarray*}\]

The idea is to construct the particular solution as the form of

\[\begin{eqnarray*} y_{p}(t)=c_{1}(t)y_{1}(t) + c_{2}(t)y_{2}(t), \\\\ c_{1}(t), c_{2}(t) \text{ are called the varying parameters.} \end{eqnarray*}\]

if

\[\begin{eqnarray*} c_{1}'(t)y_{1}(t) &+& c_{2}'(t)y_{2}(t) = 0 \\\\ c_{1}'(t)y_{1}'(t) &+& c_{2}'(t)y_{2}'(t) = f(t) \\\\ \Longrightarrow W(t) &=& \begin{vmatrix} y_{1}(t) & y_{2}(t) \\ y_{1}'(t) & y_{2}'(t) \end{vmatrix} \neq 0 \\\\ &\Longrightarrow& y_{1}(t), y_{2}(t) \text{ form a fss} \end{eqnarray*}\]

then

\[\begin{eqnarray*} y_{p}(t) &=& y_{1}\int{\frac{W_{1}}{W}dt} + y_{2}\int{\frac{W_{2}}{W}dt} \\\\ W_{1} &=& \begin{vmatrix} 0 & y_{2}(t) \\ f(t) & y_{2}'(t) \end{vmatrix} \\\\ W_{2} &=& \begin{vmatrix} y_{1}(t) & 0 \\ y_{1}'(t) & f(t) \end{vmatrix} \\\\ \end{eqnarray*}\]

So the particular solution is:

\[\begin{eqnarray*} y_{p}(t) = y_{1}(t)\int{\frac{-y_{2}(t)f(t)}{W}dt} + y_{2}(t)\int{\frac{y_{1}(t)f(t)}{W}dt} \end{eqnarray*}\]

Example 16

\[\begin{eqnarray*} y_{1}(t) = e^{s_{1}t}, y_{2}(t) = e^{s_{2}t} \end{eqnarray*}\]
\[\begin{eqnarray*} W(t) = \begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix} = \begin{vmatrix} e^{s_{1}t} & e^{s_{2}t} \\ s_{1}e^{s_{1}t} & s_{2}e^{s_{2}t} \end{vmatrix} = (s_{2}-s_{1})(e^{s_{1}t}e^{s_{2}t}) \end{eqnarray*}\]
\[\begin{eqnarray*} y_{p}(t) &=& e^{s_{1}t}\int{\frac{-e^{s_{2}T}f(T)}{(s_{2}-s_{1})e^{s_{1}T}e^{s_{2}T}}dT} + e^{s_{2}t}\int{\frac{e^{s_{1}T}f(T)}{(s_{2}-s_{1})e^{s_{1}T}e^{s_{2}T}}dT}\\\\ &=& \frac{-1}{s_{2}-s_{1}}\int{e^{s_{1}(t-T)f(T)dT}} + \frac{1}{s_{2}-s_{1}}\int{e^{s_{2}(t-T)f(T)dT}}\\\\ &=& \int{g(t-T)f(T)dT}\\\\ g(t) &=& \frac{e^{s_{1}t}-e^{s_{2}t}}{s_{1}-s_{2}}, \text{ growth factor} \end{eqnarray*}\]

Example 17

\[\begin{eqnarray*} y''=2y'+y=e^{x}\ln{x} \end{eqnarray*}\]
\[\begin{eqnarray*} r^2-2r+1 = 0 &\rightarrow& (r-1)^{2} = 0 \rightarrow y_{h}(x) = c_{1}e^{x} + c_{2}xe^{x} \\\\ \text{ take } y_{1}(x) &=& e^{x}, y_{2}(x) = xe^{x} \end{eqnarray*}\]
  1. check

\[\begin{eqnarray*} y_{1}(x) \text{ and } y_{2}(x) \text{ form a fss} \end{eqnarray*}\]
\[\begin{eqnarray*} W(x) &=& \begin{vmatrix} e^{x} & xe^{x} \\ e^{x} & e^{x}+xe^{x} \end{vmatrix} = e^{2x}+xe^{2x}-xe^{2x} = e^{2x} \neq 0 \\\\ W_{1}(x) &=& \begin{vmatrix} 0 & xe^{x} \\ e^{x}\ln{x} & e^{x}+xe^{x} \end{vmatrix} = -xe^{2x}\ln{x} \\\\ W_{2}(x) &=& \begin{vmatrix} e^{x} & 0 \\ e^{x} & e^{x}\ln{x} \end{vmatrix} = e^{2x}\ln{x} \end{eqnarray*}\]
  1. calculate the particular solution

\[\begin{eqnarray*} y_{p} &=& y_{1}\int{\frac{W_{1}}{W}dx} + y_{2}\int{\frac{W_{2}}{W}dx} \\\\ &=& e^{x}\int{\frac{-xe^{2x}\ln{x}}{e^{2x}}dx} + xe^{x}\int{\frac{e^{2x}\ln{x}}{e^{2x}}dx} \\\\ &=& -e^{x}\int{x\ln{x}dx} + xe^{x}\int{\ln{x}dx}\\\\ &=& -e^{x}(\frac{1}{2}x^{2}\ln{x}-\frac{1}{2}\int{xdx}) + xe^{x}(x\ln{x}-\int{xd\ln{x}})\\\\ &=& -e^{x}(\frac{1}{2}x^{2}\ln{x}-\frac{1}{4}x^{2}) + xe^{2}(x\ln{x}-x) \end{eqnarray*}\]
  1. caclulate the general solution

\[\begin{eqnarray*} y(x) = y_{h}(x) + y_{p}(x) \end{eqnarray*}\]