Lecture8 - Columns and rows of matrix A#

The geometry of linear equations#

Consider the two below equations. We want to solve x and y.

\[\begin{eqnarray*} 2x - y &=& 0 \\\\ -x + 2y &=& 3 \end{eqnarray*}\]

We can write them in matrix form:

\[\begin{eqnarray*} \underbrace{\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} 0 \\ 3 \end{bmatrix}}_{\vec{b}} \end{eqnarray*}\]
  • row picture

  • column picture (linear combination of columns)

\[\begin{eqnarray*} x \underbrace{\begin{bmatrix} 2 \\ -1 \end{bmatrix}}_{\vec{col1}} + y \underbrace{\begin{bmatrix} -1 \\ 2 \end{bmatrix}}_{\vec{col2}} = \underbrace{\begin{bmatrix} 0 \\ 3 \end{bmatrix}}_{\vec{b}} \end{eqnarray*}\]

Row picture shows more intuitive depictions, at least, in three dimensional questions. For example:

\[\begin{eqnarray*} 2x-y &=& 0 \\\\ -x+2y-z &=& -1 \\\\ -3y+4z &=& 4 \end{eqnarray*}\]

In matrix form:

\[\begin{eqnarray*} \underbrace{\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -3 & 4 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}}_{\vec{b}} \end{eqnarray*}\]
  • row picture

  • column picture

\[\begin{eqnarray*} x \underbrace{\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}}_{\vec{col1}} + y \underbrace{\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}}_{\vec{col2}} + z \underbrace{\begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}}_{\vec{col3}} = \underbrace{\begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}}_{\vec{b}} \end{eqnarray*}\]

We can solve this system. If we change the vector on right hand side:

\[\begin{eqnarray*} x \underbrace{\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}}_{\vec{col1}} + y \underbrace{\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}}_{\vec{col2}} + z \underbrace{\begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}}_{\vec{col3}} = \underbrace{\begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}}_{\vec{b}} \end{eqnarray*}\]

can we still solve it? So a more general questions is:

  1. can we solve Ax = b fpr every b?

  2. do the linear combinations of the collumns fill 3-D space?

For this matrix A, yes because A is nonsingular or invertible!

Ax is a linear combination of columns of A#

\[\begin{eqnarray*} \begin{bmatrix} 2 & 5 \\ 1 & 3 \\ \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix} = 1 \underbrace{\begin{bmatrix} 2 \\ 1 \\ \end{bmatrix}}_{col1} + 2 \underbrace{\begin{bmatrix} 5 \\ 3 \\ \end{bmatrix}}_{col2} = \begin{bmatrix} 12 \\ 7 \\ \end{bmatrix} \end{eqnarray*}\]

Elimination with matrices#

\[\begin{eqnarray*} x+2y+z &=& 2 \\\\ 3x+8y+z &=& 12 \\\\ 4y+z &=& 2 \end{eqnarray*}\]

In matrix form:

\[\begin{eqnarray*} \underbrace{\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix}}_{\vec{b}} \end{eqnarray*}\]

Three keys:

  1. back-substitution

  2. elimination matrices

  3. matrix multiplication

We consider augumented matrix along with back-substitution:

\[\begin{eqnarray*} &\begin{matrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{matrix}&\\\\ \Longrightarrow &\begin{matrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{matrix}&\\\\ \Longrightarrow \text{ } &\begin{matrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 5 & -10 \end{matrix}& \end{eqnarray*}\]

Now we use back-substitution:

\[\begin{eqnarray*} x+2y+z &=& 2 \\\\ 2y-2z &=& 6 \\\\ 5z &=& -10\\\\ \Longrightarrow x=2, y=1, z&=&-2 \end{eqnarray*}\]

Note

\[\begin{eqnarray*} \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} =3\times column_{1} + 4\times cololumn_{2} + 5\times column_{3} \end{eqnarray*}\]
\[\begin{eqnarray*} \begin{bmatrix} 1 & 2 & 7 \end{bmatrix} \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix} = 1\times row_{1} + 2\times row_{2} + 7\times row_{3} \end{eqnarray*}\]

Elimination with elementary matrices#

  1. substract 3*row1 from row2

\[\begin{eqnarray*} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{21}} \underbrace{\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix}}_{A} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \end{eqnarray*}\]
  1. subtract 2*row2 from row3

\[\begin{eqnarray*} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}}_{E_{32}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix}}_{U} \end{eqnarray*}\]
\[\begin{eqnarray*} \Longrightarrow E_{32}(E_{21}A) = U \Longrightarrow (E_{32}E_{21})A = U \end{eqnarray*}\]

Note

Inverse of elementary matrix

\[\begin{eqnarray*} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{21}^{-1}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{21}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{eqnarray*}\]

Permutation matrices#

row operation on the left:

\[\begin{eqnarray*} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix} \end{eqnarray*}\]

column operation on the right:

\[\begin{eqnarray*} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b & a \\ d & c \end{bmatrix} \end{eqnarray*}\]