A1. Polar Amplification in simple models#
Note
The materials and scripts are obtained from climlab tutorial: here
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import climlab
from climlab import constants as const
EBM with surface and atmosphere layers#
ebm = climlab.GreyRadiationModel(num_lev=1, num_lat=90)
insolation = climlab.radiation.AnnualMeanInsolation(domains=ebm.Ts.domain)
ebm.add_subprocess('insolation', insolation)
ebm.subprocess.SW.flux_from_space = ebm.subprocess.insolation.insolation
print(ebm)
# add a fixed relative humidity process
# (will only affect surface evaporation)
h2o = climlab.radiation.ManabeWaterVapor(state=ebm.state, **ebm.param)
ebm.add_subprocess('H2O', h2o)
# Add surface heat fluxes
shf = climlab.surface.SensibleHeatFlux(state=ebm.state, Cd=3E-4)
lhf = climlab.surface.LatentHeatFlux(state=ebm.state, Cd=3E-4)
# couple water vapor to latent heat flux process
lhf.q = h2o.q
ebm.add_subprocess('SHF', shf)
ebm.add_subprocess('LHF', lhf)
ebm.integrate_years(1)
plt.plot(ebm.lat, ebm.Ts)
plt.plot(ebm.lat, ebm.Tatm)
climlab Process of type <class 'climlab.model.column.GreyRadiationModel'>.
State variables and domain shapes:
Ts: (90, 1)
Tatm: (90, 1)
The subprocess tree:
Untitled: <class 'climlab.model.column.GreyRadiationModel'>
LW: <class 'climlab.radiation.greygas.GreyGas'>
SW: <class 'climlab.radiation.greygas.GreyGasSW'>
insolation: <class 'climlab.radiation.insolation.AnnualMeanInsolation'>
Integrating for 365 steps, 365.2422 days, or 1 years.
Total elapsed time is 0.9993368783782377 years.
[<matplotlib.lines.Line2D at 0x14a377610>]

co2ebm = climlab.process_like(ebm)
co2ebm.subprocess['LW'].absorptivity = ebm.subprocess['LW'].absorptivity*1.1
co2ebm.integrate_years(3.)
# no heat transport but with evaporation -- no polar amplification
plt.plot(ebm.lat, co2ebm.Ts - ebm.Ts)
plt.plot(ebm.lat, co2ebm.Tatm - ebm.Tatm)
Integrating for 1095 steps, 1095.7266 days, or 3.0 years.
Total elapsed time is 3.997347513512951 years.
[<matplotlib.lines.Line2D at 0x14a468cd0>]

Include meridional heat transport#
diffebm = climlab.process_like(ebm)
# thermal diffusivity in W/m**2/degC
D = 0.6
# meridional diffusivity in m**2/s
K = D / diffebm.Tatm.domain.heat_capacity * const.a**2
d = climlab.dynamics.MeridionalDiffusion(K=K, state={'Tatm': diffebm.Tatm}, **diffebm.param)
diffebm.add_subprocess('diffusion', d)
print(diffebm)
diffebm.integrate_years(3)
plt.plot(diffebm.lat, diffebm.Ts)
plt.plot(diffebm.lat, diffebm.Tatm)
climlab Process of type <class 'climlab.model.column.GreyRadiationModel'>.
State variables and domain shapes:
Ts: (90, 1)
Tatm: (90, 1)
The subprocess tree:
Untitled: <class 'climlab.model.column.GreyRadiationModel'>
LW: <class 'climlab.radiation.greygas.GreyGas'>
SW: <class 'climlab.radiation.greygas.GreyGasSW'>
insolation: <class 'climlab.radiation.insolation.AnnualMeanInsolation'>
H2O: <class 'climlab.radiation.water_vapor.ManabeWaterVapor'>
SHF: <class 'climlab.surface.turbulent.SensibleHeatFlux'>
LHF: <class 'climlab.surface.turbulent.LatentHeatFlux'>
diffusion: <class 'climlab.dynamics.meridional_advection_diffusion.MeridionalDiffusion'>
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 3.997347513512951 years.
[<matplotlib.lines.Line2D at 0x14a6e0310>]

def inferred_heat_transport( energy_in, lat_deg ):
'''Returns the inferred heat transport (in PW) by integrating the net energy imbalance from pole to pole.'''
from scipy import integrate
from climlab import constants as const
lat_rad = np.deg2rad( lat_deg )
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
x=lat_rad, initial=0. ) )
# Plot the northward heat transport in this model
Rtoa = np.squeeze(diffebm.timeave['ASR'] - diffebm.timeave['OLR'])
plt.plot(diffebm.lat, inferred_heat_transport(Rtoa, diffebm.lat))
/var/folders/z_/36cc8kqx7pqf8lzjc5cp2cf00000gn/T/ipykernel_29629/4142479116.py:6: DeprecationWarning: 'scipy.integrate.cumtrapz' is deprecated in favour of 'scipy.integrate.cumulative_trapezoid' and will be removed in SciPy 1.14.0
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
[<matplotlib.lines.Line2D at 0x14a74fe90>]

## Now warm it up!
co2diffebm = climlab.process_like(diffebm)
co2diffebm.subprocess['LW'].absorptivity = diffebm.subprocess['LW'].absorptivity*1.1
co2diffebm.integrate_years(5)
# with heat transport and evaporation
# Get some modest polar amplifcation of surface warming
# but larger equatorial amplification of atmospheric warming
# Increased atmospheric gradient = increased poleward flux.
plt.plot(diffebm.lat, co2diffebm.Ts - diffebm.Ts, label='Ts')
plt.plot(diffebm.lat, co2diffebm.Tatm - diffebm.Tatm, label='Tatm')
plt.legend()
Integrating for 1826 steps, 1826.2110000000002 days, or 5 years.
Total elapsed time is 8.99676981465997 years.
<matplotlib.legend.Legend at 0x149f8b4d0>

Rtoa = np.squeeze(diffebm.timeave['ASR'] - diffebm.timeave['OLR'])
Rtoa_co2 = np.squeeze(co2diffebm.timeave['ASR'] - co2diffebm.timeave['OLR'])
plt.plot(diffebm.lat, inferred_heat_transport(Rtoa, diffebm.lat), label='1xCO2')
plt.plot(diffebm.lat, inferred_heat_transport(Rtoa_co2, diffebm.lat), label='2xCO2')
plt.legend()
/var/folders/z_/36cc8kqx7pqf8lzjc5cp2cf00000gn/T/ipykernel_29629/4142479116.py:6: DeprecationWarning: 'scipy.integrate.cumtrapz' is deprecated in favour of 'scipy.integrate.cumulative_trapezoid' and will be removed in SciPy 1.14.0
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
<matplotlib.legend.Legend at 0x14b041dd0>

We get polar amplification in surface air temperature!!!
Exclude evaporation#
diffebm2 = climlab.process_like(diffebm)
diffebm2.remove_subprocess('LHF')
diffebm2.integrate_years(3)
co2diffebm2 = climlab.process_like(co2diffebm)
co2diffebm2.remove_subprocess('LHF')
co2diffebm2.integrate_years(3)
# With transport and no evaporation...
# No polar amplification, either of surface or air temperature!
plt.plot(diffebm2.lat, co2diffebm2.Ts - diffebm2.Ts, label='Ts')
plt.plot(diffebm2.lat, co2diffebm2.Tatm[:,0] - diffebm2.Tatm[:,0], label='Tatm')
plt.legend()
plt.figure()
# And in this case, the lack of polar amplification is DESPITE an increase in the poleward heat transport.
Rtoa = np.squeeze(diffebm2.timeave['ASR'] - diffebm2.timeave['OLR'])
Rtoa_co2 = np.squeeze(co2diffebm2.timeave['ASR'] - co2diffebm2.timeave['OLR'])
plt.plot(diffebm2.lat, inferred_heat_transport(Rtoa, diffebm2.lat), label='1xCO2')
plt.plot(diffebm2.lat, inferred_heat_transport(Rtoa_co2, diffebm2.lat), label='2xCO2')
plt.legend()
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 6.995358148647664 years.
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 11.994780449794684 years.
/var/folders/z_/36cc8kqx7pqf8lzjc5cp2cf00000gn/T/ipykernel_29629/4142479116.py:6: DeprecationWarning: 'scipy.integrate.cumtrapz' is deprecated in favour of 'scipy.integrate.cumulative_trapezoid' and will be removed in SciPy 1.14.0
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
<matplotlib.legend.Legend at 0x14b1ed9d0>


No polar amplification this time :(
Column model#
model = climlab.GreyRadiationModel(num_lev=30, num_lat=90, abs_coeff=1.6E-4)
insolation = climlab.radiation.AnnualMeanInsolation(domains=model.Ts.domain)
model.add_subprocess('insolation', insolation)
model.subprocess.SW.flux_from_space = model.subprocess.insolation.insolation
print(model)
# Convective adjustment for atmosphere only
conv = climlab.convection.ConvectiveAdjustment(state={'Tatm':model.Tatm}, adj_lapse_rate=6.5,
**model.param)
model.add_subprocess('convective adjustment', conv)
# add a fixed relative humidity process
# (will only affect surface evaporation)
h2o = climlab.radiation.water_vapor.ManabeWaterVapor(state=model.state, **model.param)
model.add_subprocess('H2O', h2o)
# Add surface heat fluxes
shf = climlab.surface.SensibleHeatFlux(state=model.state, Cd=1E-3)
lhf = climlab.surface.LatentHeatFlux(state=model.state, Cd=1E-3)
lhf.q = model.subprocess.H2O.q
model.add_subprocess('SHF', shf)
model.add_subprocess('LHF', lhf)
model.integrate_years(3.)
def plot_temp_section(model, timeave=True):
fig = plt.figure()
ax = fig.add_subplot(111)
if timeave:
field = model.timeave['Tatm'].transpose()
else:
field = model.Tatm.transpose()
cax = ax.contourf(model.lat, model.lev, field)
ax.invert_yaxis()
ax.set_xlim(-90,90)
ax.set_xticks([-90, -60, -30, 0, 30, 60, 90])
fig.colorbar(cax)
plot_temp_section(model, timeave=False)
climlab Process of type <class 'climlab.model.column.GreyRadiationModel'>.
State variables and domain shapes:
Ts: (90, 1)
Tatm: (90, 30)
The subprocess tree:
Untitled: <class 'climlab.model.column.GreyRadiationModel'>
LW: <class 'climlab.radiation.greygas.GreyGas'>
SW: <class 'climlab.radiation.greygas.GreyGasSW'>
insolation: <class 'climlab.radiation.insolation.AnnualMeanInsolation'>
Integrating for 1095 steps, 1095.7266 days, or 3.0 years.
Total elapsed time is 2.998010635134713 years.

co2model = climlab.process_like(model)
co2model.subprocess['LW'].absorptivity = model.subprocess['LW'].absorptivity*1.1
co2model.integrate_years(3)
plot_temp_section(co2model, timeave=False)
# Without transport, get equatorial amplification
plt.figure()
plt.plot(model.lat, co2model.Ts - model.Ts, label='Ts')
plt.plot(model.lat, co2model.Tatm[:,0] - model.Tatm[:,0], label='Tatm')
plt.legend()
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 5.996021270269426 years.
<matplotlib.legend.Legend at 0x14b832690>


Include meridional heat transport#
diffmodel = climlab.process_like(model)
# thermal diffusivity in W/m**2/degC
D = 0.05
# meridional diffusivity in m**2/s
K = D / diffmodel.Tatm.domain.heat_capacity[0] * const.a**2
print(K)
d = climlab.dynamics.MeridionalDiffusion(K=K, state={'Tatm':diffmodel.Tatm}, **diffmodel.param)
diffmodel.add_subprocess('diffusion', d)
print(diffmodel)
diffmodel.integrate_years(3)
plot_temp_section(diffmodel)
# Plot the northward heat transport in this model
plt.figure()
Rtoa = np.squeeze(diffmodel.timeave['ASR'] - diffmodel.timeave['OLR'])
plt.plot(diffmodel.lat, inferred_heat_transport(Rtoa, diffmodel.lat))
5946637.413346613
climlab Process of type <class 'climlab.model.column.GreyRadiationModel'>.
State variables and domain shapes:
Ts: (90, 1)
Tatm: (90, 30)
The subprocess tree:
Untitled: <class 'climlab.model.column.GreyRadiationModel'>
LW: <class 'climlab.radiation.greygas.GreyGas'>
SW: <class 'climlab.radiation.greygas.GreyGasSW'>
insolation: <class 'climlab.radiation.insolation.AnnualMeanInsolation'>
convective adjustment: <class 'climlab.convection.convadj.ConvectiveAdjustment'>
H2O: <class 'climlab.radiation.water_vapor.ManabeWaterVapor'>
SHF: <class 'climlab.surface.turbulent.SensibleHeatFlux'>
LHF: <class 'climlab.surface.turbulent.LatentHeatFlux'>
diffusion: <class 'climlab.dynamics.meridional_advection_diffusion.MeridionalDiffusion'>
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 5.996021270269426 years.
/var/folders/z_/36cc8kqx7pqf8lzjc5cp2cf00000gn/T/ipykernel_29629/4142479116.py:6: DeprecationWarning: 'scipy.integrate.cumtrapz' is deprecated in favour of 'scipy.integrate.cumulative_trapezoid' and will be removed in SciPy 1.14.0
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
[<matplotlib.lines.Line2D at 0x14ba58150>]


## Now warm it up!
co2diffmodel = climlab.process_like(diffmodel)
co2diffmodel.subprocess['LW'].absorptivity = diffmodel.subprocess['LW'].absorptivity*1.1
co2diffmodel.integrate_years(3)
# With transport, get polar amplification...
# of surface temperature, but not of air temperature!
plt.plot(diffmodel.lat, co2diffmodel.Ts - diffmodel.Ts, label='Ts')
plt.plot(diffmodel.lat, co2diffmodel.Tatm[:,0] - diffmodel.Tatm[:,0], label='Tatm')
plt.legend()
Rtoa = np.squeeze(diffmodel.timeave['ASR'] - diffmodel.timeave['OLR'])
plt.figure()
Rtoa_co2 = np.squeeze(co2diffmodel.timeave['ASR'] - co2diffmodel.timeave['OLR'])
plt.plot(diffmodel.lat, inferred_heat_transport(Rtoa, diffmodel.lat), label='1xCO2')
plt.plot(diffmodel.lat, inferred_heat_transport(Rtoa_co2, diffmodel.lat), label='2xCO2')
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 8.994031905404139 years.
/var/folders/z_/36cc8kqx7pqf8lzjc5cp2cf00000gn/T/ipykernel_29629/4142479116.py:6: DeprecationWarning: 'scipy.integrate.cumtrapz' is deprecated in favour of 'scipy.integrate.cumulative_trapezoid' and will be removed in SciPy 1.14.0
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
[<matplotlib.lines.Line2D at 0x14bb4b3d0>]


We get polar amplification!!!
Exclude evaporation#
diffmodel2 = climlab.process_like(diffmodel)
diffmodel2.remove_subprocess('LHF')
print(diffmodel2)
diffmodel2.integrate_years(3)
climlab Process of type <class 'climlab.model.column.GreyRadiationModel'>.
State variables and domain shapes:
Ts: (90, 1)
Tatm: (90, 30)
The subprocess tree:
Untitled: <class 'climlab.model.column.GreyRadiationModel'>
LW: <class 'climlab.radiation.greygas.GreyGas'>
SW: <class 'climlab.radiation.greygas.GreyGasSW'>
insolation: <class 'climlab.radiation.insolation.AnnualMeanInsolation'>
convective adjustment: <class 'climlab.convection.convadj.ConvectiveAdjustment'>
H2O: <class 'climlab.radiation.water_vapor.ManabeWaterVapor'>
SHF: <class 'climlab.surface.turbulent.SensibleHeatFlux'>
diffusion: <class 'climlab.dynamics.meridional_advection_diffusion.MeridionalDiffusion'>
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 8.994031905404139 years.
co2diffmodel2 = climlab.process_like(co2diffmodel)
co2diffmodel2.remove_subprocess('LHF')
co2diffmodel2.integrate_years(3)
Integrating for 1095 steps, 1095.7266 days, or 3 years.
Total elapsed time is 11.992042540538852 years.
# With transport and no evaporation...
# No polar amplification, either of surface or air temperature!
plt.plot(diffmodel2.lat, co2diffmodel2.Ts - diffmodel2.Ts, label='Ts')
plt.plot(diffmodel2.lat, co2diffmodel2.Tatm[:,0] - diffmodel2.Tatm[:,0], label='Tatm')
plt.legend()
Rtoa = np.squeeze(diffmodel2.timeave['ASR'] - diffmodel2.timeave['OLR'])
Rtoa_co2 = np.squeeze(co2diffmodel2.timeave['ASR'] - co2diffmodel2.timeave['OLR'])
plt.figure()
plt.plot(diffmodel2.lat, inferred_heat_transport(Rtoa, diffmodel2.lat), label='1xCO2')
plt.plot(diffmodel2.lat, inferred_heat_transport(Rtoa_co2, diffmodel2.lat), label='2xCO2')
/var/folders/z_/36cc8kqx7pqf8lzjc5cp2cf00000gn/T/ipykernel_29629/4142479116.py:6: DeprecationWarning: 'scipy.integrate.cumtrapz' is deprecated in favour of 'scipy.integrate.cumulative_trapezoid' and will be removed in SciPy 1.14.0
return ( 1E-15 * 2 * np.math.pi * const.a**2 * integrate.cumtrapz( np.cos(lat_rad)*energy_in,
[<matplotlib.lines.Line2D at 0x14ccb7c90>]


Excluding evaporation reduces polar amplification. Why?